Australasian Science: Australia's authority on science since 1938

Scientists model 'extraordinary' performance of Bolt

Mathematical model accurately depicts the extraordinary feats of Usain Bolt during his 100 metre world record sprint.

The full text of this article can be purchased from Informit.

A group of researchers from Mexico has provided an insight into the physics of one of the greatest athletic performances of all time.

In a paper published in the European Journal of Physics, the researchers have put forward a mathematical model that accurately depicts the truly extraordinary feats of Usain Bolt during his 100 metre world record sprint at the 2009 World Championships in Berlin.

According to the researchers' model, Bolt's time of 9.58 seconds -- which is still the world record -- was achieved by reaching a terminal velocity of 12.2 metres per second and exerting an average force of 815.8 newtons.

What was truly amazing about his performance, however, was the amount of power and energy that Bolt had to exert to overcome the effects of drag caused by air resistance, which were exacerbated by Bolt's huge 6ft 5in frame.

By taking into account the altitude of the Berlin track, the temperature at the time of the race and the cross-section of Bolt himself, the researchers calculated that he had a drag coefficient of 1.2, which is less aerodynamic than the average human.

According to the calculations, Bolt developed 81.58 kJ of energy during the 9.58 seconds, but only 7.79% of this was used to achieve motion; the remaining 92.21% (75.22 kJ) was absorbed by the drag.

Furthermore, the researchers calculated that Bolt had a...

The full text of this article can be purchased from Informit.

Institute of Physics